Symbolic Field Notebook
[1]:
%matplotlib widget
import numpy as np
import sympy as sp
from mechpy.core.symbolic.coord import (
SymbolicCartesianCoordSystem,
SymbolicCylindricalCoordSystem,
)
from mechpy.core.symbolic.field import (
SymbolicScalarField,
SymbolicVectorField,
SymbolicTensorField,
)
Symbolic Field
Linear Scalar Field
[2]:
data = sp.Array([1, 2, 3])
scalar_field = SymbolicScalarField.create_linear(data=data)
display(scalar_field.data)
$\displaystyle \left[\begin{matrix}x + 2 y + 3 z\end{matrix}\right]$
Non Linear Scalar Field
[3]:
coord_system = SymbolicCartesianCoordSystem()
display(coord_system)
SymbolicCartesianCoordSystem(origin=(0, 0, 0), basis=(x, y, z))
[4]:
x1, x2, x3 = coord_system.basis
f = x1*x1 - x2*x2
display(f)
$\displaystyle x^{2} - y^{2}$
[5]:
data = sp.Array([f])
scalar_field = SymbolicScalarField.create(coord_system=coord_system, data=data)
display(scalar_field)
SymbolicScalarField(
(x, y, z),
[x**2 - y**2],
{})
[6]:
scalar_field.plot()
[7]:
coord_system = SymbolicCylindricalCoordSystem()
display(coord_system)
SymbolicCylindricalCoordSystem(origin=(0, 0, 0), basis=(r, theta, z))
[8]:
x1, x2, x3 = coord_system.basis
f = x1 + x3*x3
display(f)
$\displaystyle r + z^{2}$
[9]:
data = sp.Array([f])
scalar_field = SymbolicScalarField.create(coord_system, data)
display(scalar_field)
SymbolicScalarField(
(r, theta, z),
[r + z**2],
{})
[10]:
scalar_field = scalar_field.to_cartesian()
display(scalar_field)
scalar_field.plot()
SymbolicScalarField(
(x, y, z),
[z**2 + sqrt(x**2 + y**2)],
{})
Linear Vector Field
[11]:
data = sp.Array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
vector_field = SymbolicVectorField.create_linear(data=data)
display(vector_field.data)
$\displaystyle \left[\begin{matrix}x + 2 y + 3 z & 4 x + 5 y + 6 z & 7 x + 8 y + 9 z\end{matrix}\right]$
[12]:
vector_field.plot()
Linear Tensor Field
[13]:
data = sp.Array(
[
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
[[11, 12, 13], [14, 15, 16], [17, 18, 19]],
[[21, 22, 23], [24, 25, 26], [27, 28, 29]],
]
)
display(data.shape)
tensor_field = SymbolicTensorField.create_linear(data=data)
display(tensor_field.data)
$\displaystyle \left( 3, \ 3, \ 3\right)$
$\displaystyle \left[\begin{matrix}x + 2 y + 3 z & 4 x + 5 y + 6 z & 7 x + 8 y + 9 z\\11 x + 12 y + 13 z & 14 x + 15 y + 16 z & 17 x + 18 y + 19 z\\21 x + 22 y + 23 z & 24 x + 25 y + 26 z & 27 x + 28 y + 29 z\end{matrix}\right]$
Field with params
[14]:
n, m = sp.symbols("n m")
field_params = {
n: None,
m: None,
}
data = sp.Array([1 * n, -2 * m, 0])
linear_scalar_field = SymbolicScalarField.create_linear(
data=data,
field_params=field_params,
)
display(linear_scalar_field)
linear_scalar_field.subs_field_params({n: 3})
linear_scalar_field.subs_field_params({m: 0})
display(linear_scalar_field)
linear_scalar_field.plot()
SymbolicScalarField(
(x, y, z),
[-2*m*y + n*x],
{n: None, m: None})
SymbolicScalarField(
(x, y, z),
[3*x],
{})
Ploting field with params
[15]:
n, m = sp.symbols("n m")
field_params = {
n: set(np.arange(-2, 2, 0.3)),
m: set(np.arange(-2, 2, 0.3)),
}
data = sp.Array([1 * n, -2 * m, 0])
linear_scalar_field = SymbolicScalarField.create_linear(
data=data,
field_params=field_params,
)
linear_scalar_field.plot()